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 Executive Summary 
 Summary of Requirements 

 Our project requires improvement and expansion of the quadcopter resources 
 developed by prior MicroCART teams. The primary avenues of improvement are 
 the ‘Ground Station” PC software for interaction with quadcopters, lab materials 
 for CPRE 488’s UAV Control lab, and developing a small quadcopter with 
 multicore computing capabilities. 

 Applicable Courses from Iowa State University Curriculum 
 ●  CPRE 288 - Embedded Systems 
 ●  CPRE 308 - Operating Systems: Principles and Practice 
 ●  CPRE 458 - Real Time Systems 
 ●  CPRE 488 - Embedded Systems Design 
 ●  CPRE 489 - Computer Networking and Data Communications 
 ●  COMS 309 - Software Development Practices 
 ●  EE 333 - Electronic Systems Design 
 ●  EE 475 - Automatic Control Systems 

 New Skills/Knowledge acquired that was not taught in courses 
 ●  CAD 3D Modeling 
 ●  PCB design 
 ●  Raspberry Pi development 
 ●  Ubuntu imaging 
 ●  QT GUI programming 
 ●  GitLab Documentation 

 Development Standards & Practices Used 
 ●  IEEE 1936.1-2021: IEEE Standard for Drone Applications Framework 
 ●  IEEE 1625-2008: IEEE Standard for Rechargeable Batteries for Multi-Cell 

 Mobile Computing Devices 
 ●  Bluetooth Low Energy (BLE) 
 ●  Utilize a wifi standard within the 802.11 specification for wifi 

 communication 

 ●  Waterfall Methodology 
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 List of Acronyms/definitions 

 MicroCART- Microprocessor Controlled Aerial Robotics Team 

 Crazyflie- Refers to the Bitcraze Crazyflie which is an open source drone 

 hardware and software which has been developed for prior MicroCart Projects 

 CPRE 488 - Computer Engineering 488 refers to the class Embedded Systems 

 Design 

 EE 476 - Electrical Engineering 476 refers to the class  Control System 

 PID - Proportional–Integral–Derivative which relates to the 

 Proportional–Integral–Derivative controller 

 PCB - Printed Circuit Board 

 FPGA - Field-Programmable Gate Array 

 IMU - Inertial Measurement Unit 

 ESC - Electronic Speed Controller 

 PWM - Pulse Width Modulation 

 GPIO - General-Purpose Input/Output 

 GUI - Graphical User Interface 

 CLI - Command Line Interface 

 MP-4 - Machine Project 4 refers to the CPRE 488 Embedded systems class 

 project that involves using the MicroCART project 

 SDMAY - Senior Design May 

 BLE - Bluetooth Low Energy 

 I2C - Inter-Integrated Circuit 

 XIAO SAMD21 - Low powered Arduino Controller 

 Seeeduino - Arduino Microcontroller that is used as the motor controller 

 pycrocart - new GUI developed for use with crazyflie 

 flypi- the name given to SDMAY 45 new drone 
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 1  Team 

 1.1  T  EAM  M  EMBERS 
 ●  Austin Beinder 
 ●  Cole Hunt 
 ●  Connor Ryan 
 ●  Emily Anderson 
 ●  Gautham Ajith 
 ●  Grant Giansanti 
 ●  Tyler Johnson 

 1.2  R  EQUIRED  S  KILL  S  ETS  FOR  Y  OUR  P  ROJECT 
 ●  Software 

 ○  C/C++ 
 ○  Qt 
 ○  Arduino 
 ○  MATLAB 

 ●  Controls 
 ●  Simulation 
 ●  Video Editing 
 ●  CAD/3D Printing 
 ●  PCB Design 
 ●  Networking/Communication 

 1.3  S  KILL  S  ETS  COVERED  BY  THE  T  EAM 
 ●  Software 

 ○  C/C++ (Cole Hunt, Grant Giansanti, Emily Anderson, Gautham 
 Ajith) 

 ○  Qt (Emily Anderson, Gautham Ajith) 
 ○  Arduino (Grant Giansanti, Connor Ryan) 
 ○  MATLAB (Austin Beinder, Gautham Ajith) 
 ○  Python (Austin Beinder) 

 ●  Controls (Austin Beinder, Tyler Johnson) 
 ●  Simulation (Austin Beinder, Gautham Ajith) 
 ●  Video Editing (Gautham Ajith) 
 ●  CAD/3D Printing (Austin Beinder, Tyler Johnson) 
 ●  PCB Design (Connor Ryan, Tyler Johnson) 
 ●  Networking/Communication (Emily Anderson, Cole Hunt) 
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 1.4  P  ROJECT  M  ANAGEMENT  S  TYLE  A  DOPTED  BY  THE  TEAM 

 We have an assigned project manager who is to uphold with the help of the other 
 team members a waterfall project management style. The design of the product 
 requires each step to be done prior to beginning the next. Product development 
 follows a linear sequence due to researching parts, ordering, assembling, and 
 testing being a time/resource consuming process which limits the number of 
 iterations allowed. 

 With all of the files being handled by git, we use it to track the progress of our 
 project. Last team’s year used git issues to track progress and using the same 
 strategy would improve cohesiveness and readability for future teams. Progress is 
 being documented through Git Issues and well written commit messages 
 following a commit template with relation to the corresponding issues. Gantt 
 chart tracks our top-level deadline for our project. 

 One major change we made for the Spring semester is working in 2 week sprints 
 to increase frequent communication and keep each other more accountable. It 
 was clear to us last semester that we did not make as much progress as we 
 wanted to so therefore we mitigated this with our sprints. 

 1.5  P  ROJECT  M  ANAGEMENT  R  OLES 
 ●  Project Manager: Tyler Johnson 
 ●  Git Master- Cole Hunt 
 ●  Physical Systems Lead:  Connor Ryan 
 ●  GUI Lead: Gautham Ajith 
 ●  Backend/Telemetry Lead- Emily Anderson 
 ●  Device OS- Cole Hunt 
 ●  YouTube Lead: Gautham Ajith 
 ●  User Interaction/Testing: Grant Giansanti 
 ●  Simulation/Controls Lead: Austin Beinder 
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 2  Introduction 

 2.1  P  ROBLEM  S  TATEMENT 

 For many years, Professor Jones has been advising MicroCART teams to 
 construct a variety of aerial robots for use in research on embedded control 
 systems. Recent years have gravitated towards quadcopters for their 
 controllability. Past quadcopters were massive with early iterations even being 
 gas powered. As technology has advanced, smaller electrically powered 
 quadcopters have become practical. Past teams have developed large FPGA 
 controlled quadcopters and small drones controlled by microcontrollers. For 
 future experimentation there is a desire to create a small to medium sized 
 quadcopter backed by a multicore microprocessor. The new platform would allow 
 the exploration of advanced control algorithms and the incorporation of 
 operating systems. The quadcopter should maintain a small size for convenient 
 indoor flight and experiments. The Ground Station PC software used to interface 
 with MicroCART quadcopters should also be adjusted for improved performance 
 and compatibility with the new quadcopter. 

 2.2  I  NTENDED  U  SERS  AND  U  SES 

 MicroCART strives to develop new quadcopter resources to be used throughout 
 the Iowa State Community. The three primary groups the current team targets 
 with new innovations include: 

 ●  User Group #1: CPRE 488 Students 
 ○  SDMAY22-43 developed a UAV Control lab for the class using 

 MicroCART resources 
 ○  Improvements to Ground Station GUI increase the usability and 

 enhance students’ experiences in the lab 
 ●  User Group #2: Graduate Students 

 ○  Graduate students researching quadcopter control need a variety of 
 platforms to conduct experiments 

 ○  Documentation is needed to quickly allow researchers to integrate 
 and adapt the resources provided to them 

 ●  User Group #3: EE 476 Students 
 ○  Students enrolled in control system courses will likely have a 

 curiosity towards quadcopter flight controllers 
 ○  The course provides a future opportunity to use MicroCART 

 resources in lab experiments 
 ○  Lab experiments already using similar quadcopters but are limited 

 by using manufacturer software 
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 2.3  R  EQUIREMENTS  & C  ONSTRAINTS 
 ●  Functional Requirements: 

 ○  The drone communication must have a maximum latency of 10 ms 
 ○  Should be able to maintain hovering in place for 5 seconds 
 ○  The quadcopter should perform as well or better than the Crazyflie 

 currently used 
 ●  Resource Requirements: 

 ○  The quadcopter should communicate over Bluetooth Low Energy or 
 the wifi network cards on lab computers 

 ○  The quadcopter must use brushless motors 
 ○  The processor controlling the quadcopter should have multiple 

 cores available 
 ○  The flight control software should be useable on lab computers 

 without the need for administrative privileges 
 ●  Physical Requirements: 

 ○  The dimensions of the quadcopter will be less than 125mm x 
 125mm. 

 ○  The quadcopter will have a balanced layout to allow for stable flight. 
 ○  The quadcopter will weigh less than 300g. 

 ●  User Experiential Requirements: 
 ○  The documentation for the hardware and software should be easily 

 comprehensible by senior level engineering students interested in 
 controls or embedded systems. 

 ○  The GUI needs to be easy to navigate and simplicity of the interface 
 ○  The GUI should provide reliable performance when communicating 

 with the mini quadcopter, crashing less than 2.5 times per 3 hour 
 work session. 

 ●  Environmental Requirements: 
 ○  The quadcopter should be safe for indoor use. 
 ○  A test stand capable of restraining the quadcopters motion to only 

 roll, pitch, or yaw. 
 ○  Student labs will often have multiple students present and the risk 

 of physical harm to students should be low. No more than one 
 incident should occur per semester. 

 2.4  E  NGINEERING  S  TANDARDS 
 ●  IEEE 1936.1-2021: IEEE Standard for Drone Applications Framework 

 ○  Within this framework it describes the support of drones including 
 the flight platform, the control systems,qualification of operators 

 8 



 and insurance. We will need this to make sure that we are using 
 proper safety when operating our drone 

 ●  IEEE 1625-2008: IEEE Standard for Rechargeable Batteries for Multi-Cell 
 Mobile Computing Devices 

 ○  This describes the standards for using lithium ion batteries within a 
 computing device. Since we are power both the PIE and the drone 
 from lithion battery we need to make sure we are following proper 
 procedures to make sure the drone is safe and does not exceed 
 extreme temperatures 

 ●  Utilize a wifi standard within the 802.11 specification for wifi 
 communication 

 ○  This standard describes the protocols of wifi communication. We 
 will be using the drone over wifi as well, therefore we will need to to 
 follow these standards. 

 3 Project Plan 

 3.1  P  ROJECT  M  ANAGEMENT  /T  RACKING  P  ROCEDURES 

 The project workflow follows the waterfall management style. The design of the 
 product requires each step to be done prior to beginning the next. Product 
 development follows a linear sequence as researching parts, ordering, 
 assembling, and testing is a time/resource consuming process which limits the 
 number of iterations allowed. 

 Progress throughout the project will be tracked using Git issues. This is a 
 favorable option since past files are hosted on git. Former teams tracked issues in 
 a similar fashion so using the same approach will result in material being 
 readable and cohesive. 

 3.2  T  ASK  D  ECOMPOSITION 

 1.  New Mini Quadcopter 
 a.  Hardware 

 i.  Research quadcopter hardware 
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 ii.  Select and order premade parts (frame,motors,battery) 
 iii.  Design IMU/ESC PCB 
 iv.  Order and assemble IMU/ESC PCB 
 v.  Test basic operation of IMU/ESC Board 

 vi.  Test mini quadcopter with Raspberry Pi flight controller 
 firmware (correlates with 1.b.iii) 

 vii.  Evaluate possible improvements to 1st hardware revision 
 b.  Software 

 i.  Convert Crazyflie flight controller firmware to Raspberry Pi 
 ii.  Test I/O pins for proper operation 

 iii.  Test firmware on mini quadcopter (correlates with 1.a.vi) 
 2.  Ground Station 

 a.  Understand current CLI/GUI implementation 
 b.  Explore issues found while running through MP-4 (correlates with 

 3.b) 
 c.  Improve User Experience 
 d.  Minimize crashes and data loss 

 3.  Improve Lab Material 
 a.  Complete MP-4 to gain familiarity with the lab 
 b.  Address issues encountered during MP-4 
 c.  Improve lab document for readability 
 d.  Add information to CPRE488 wiki to help students debug issues 

 4.  Improve Simulation 
 a.  Understand current Simulink based simulation 
 b.  Move from being mostly Simulink based to being mostly Matlab 

 based 

 3.3  P  ROJECT  P  ROPOSED  M  ILESTONES  , M  ETRICS  ,  AND  E  VALUATION 

 C  RITERIA 

 ●  New Quadcopter 
 ○  Quadcopter will communicate with the ground station over WiFi 

 with a latency less than 10ms. 
 ○  After tuning PID values quadcopter will be able to maintain a 

 controlled hover for more than five seconds. 
 ○  The flight controllers control loop will execute at the same speed or 

 faster than the current crazyflie flight controller. 
 ●  Ground Station GUI 

 ○  A ‘Set Parameters From Json’ button will be added to streamline 
 the process of setting PID values. 
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 ○  The test stand software will be adjusted to provide data with less 
 than a two second delay, compared to a prior delay of ten seconds. 

 ○  Lab groups will experience no more than 5 errors using the ground 
 station when completing MP-4. 

 - 

 11 



 4  Design 

 4.1 D  ESIGN  C  ONTEXT 

 4.1.1 Broader Context 
 Research groups and quadcopter labs need an improved quadcopter from the 
 current crazyflie model with additional computing power and flexibility. The 
 current model is a limited platform with minimal wiggle room available for 
 deploying new hardware or software. The interaction with the drone though the 
 Ground Station GUI can be buggy, slow, and troublesome. Performance issues 
 heavily impact classes including CPRE488, EE476, and research groups using the 
 crazyflie. These groups could save time debugging the drone and its software if 
 bugs were fixed and systems were better documented.  Reducing the time for 
 debugging can allow for the users to be able to quickly conduct the research or 
 learning background information needed for using the quadcopter. 

 Our project must adhere to public safety standards as drones are commonly 
 operated indoors. Failsafes will be put in place to mitigate potential risks to 
 students and lab equipment. Safety systems include test stands for safely tuning 
 flight control, kill switch for powering off uncontrollable quadcopters, and motor 
 power being automatically cut when connection is lost. 

 The quadcopter labs have an economic impact because the current crazyflie 
 drones cost around $225 each. Building our own quadcopter presents a chance to 
 reduce cost and increase the durability of quadcopters. Economically impact can 
 be further mitigated by designing the quadcopter in a way to be easily repairable 
 with spare parts. 

 4.1.2 Prior Work/Solutions 
 The MicroCART team has been around for over 20  years working to 
 continuously improve aerial robotic resources at Iowa State. There have been 
 many different implementations over the years that we can take inspiration from. 
 Each of these teams has a git repo and last year's team created a youtube channel 
 with tutorials and demonstrations to reference. One past project, made by 
 SDMAY 15-28, was a large quadcopter too big to be used in the classroom, shown 
 in Figure 1. 
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 Figure 1.1: Team 15-28 microcart 

 The quadcopter had a range of capabilities with an onboard FPGA, but the size 
 limited the ability to conduct experiments in the laboratory. The succeeding 
 teams sought to develop a smaller quadcopter solution because reducing the size 
 provided a safer environment and also reduced cost. 

 The previous team used a crazyflie as the drone of choice. The open-source 
 design, shown in Figure 1.2, provided a slew of expansion decks and compatible 
 software. The small size allowed the creation of lab experiments for 
 undergraduate courses, but the quadcopter had greatly reduced computing power 
 compared to prior generations. 

 Figure 1.2: Crazyflie 

 The crazyflie drone led to successful implementation of quadcopter labs, but 
 student feedback collected by last year’s team pointed to areas of improvement. 

 13 



 Our new quadcopter design seeks to find a balance between the convenient size of 
 the crazyflie and the computing power of larger, research drones. 

 Lastly, we can also use other drone enthusiast work to help us on this project. 
 There are many webinars that mathworks puts on that shows how to connect a 
 drone to the simulations. These resources will help us to expedite our prototyping 
 time. 

 4.1.3 Technical Complexity 
 Designing a new quadcopter and revising Ground Station software for improved 
 performance presents a technically complex task. 

 The quadcopter design requires the integration of an ESC, IMU, and expansion 
 decks with a Raspberry Pi Zero 2W. A power distribution system must be 
 designed to provide sufficient power to the various modules. Software must be 
 developed to interface the microcontroller with the motors and sensors. All of the 
 modules and connections must be fixed on a compact PCB housed in the frame of 
 the quadcopter.  In addition, the Raspberry Pi needs to have an adapted image to 
 provide wifi access through an Ubuntu operating system and reserve a core to run 
 FreeRTOS on baremetal for the flight controller. 

 Making improvements to the Ground Station software requires a thorough 
 knowledge of the existing architecture. The current system consists of a frontend, 
 GUI, CLI, backend, and adapters for the specific quadcopter. An understanding 
 of the operation of each module and how they interconnect is needed to 
 effectively alter the software. 

 4.2 D  ESIGN  E  XPLORATION 

 4.2.1 Design Decisions 
 List key design decisions (at least three) that you have made or will need to make 
 in relation to your proposed solution. These can include, but are not limited to, 
 materials, subsystems, physical components, sensors/chips/devices, physical 
 layout, features, etc. Describe why these decisions are important to project 
 success. 

 Our project is to design a quadcopter. Quadcopters have a limited number of 
 physical components and these include a frame, flight computer, battery, motors, 
 motor controllers, and propellers. Our first design decision was to select the 
 components we would use in supporting the quadcopter. Our client specified that 
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 they would like us to either use a Raspberry Pi Zero or Zynqberry Zero as the 
 main flight computer. We then also require an IMU to provide sensor data 
 needed to support the flight computer in determining its position, and also a 
 voltage regulator for stepping down the battery voltage. Knowing that we require 
 these sets of components, we have spent some time in specifying at least three 
 different options for each and then selecting what we believe to be the best 
 combination for the hardware design of our drone. The selection of these 
 components is important because they impact the total weight and size of the 
 quadcopter. The correct combination of parts must be selected to provide a drone 
 large enough to house the required hardware and enough motor power for 
 efficient flight. A detailed description of the selection process for quadcopter 
 parts is provided in Appendix 3. 

 The next design decision is based upon the microprocessor being used. The 
 Raspberry Pi Zero 2W and Zynqberry Zero both have the same footprint, but they 
 lack the basic sensor and motor capabilities needed for flight control. A breakout 
 board to provide the microprocessor with the necessary abilities must be 
 designed. Deciding between the microprocessors is important because they vary 
 in computing capability and implementation complexity. Ultimately the 
 Raspberry Pi Zero 2W was chosen due to a reduced implementation complexity 
 and greater availability in the marketplace. 

 Our third design decision was to select problems with the Ground Station GUI to 
 address and fix. Focus on improving the key functionality of the user interface is 
 important to efficiently allocate resources to improve user experience. The 
 decision to focus on fixing these issues will increase the amount of success that 
 students enjoy during the lab. 

 4.2.2 Ideation 
 Over the course of the semester many different designs within our many parts of 
 this project  were considered. Back in 491 we had to decide the hardware 
 components for our drone and that thought process is provided in appendix 3. 

 However one major design that required much ideation was the test stand to hold 
 down the drone when testing and to be able to isolate one axis for PID tuning. 
 This took multiple iterations and ultimately some redesigns. 
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 Figure 4.1: Roll Test Stand Design 1 

 In the above figure this was my idea for my roll test stand and this would attach 
 to two holes directly onto our frame of the drone. However while this worked the 
 placement of the battery in the design which was currently on top of the drone 
 was making the drone unstable. Therefore we had to redesign a stand to hold the 
 battery then be able to connect onto the test stand. 

 Figure 4.2: Battery pack design 1 
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 This was our first design of the battery pack: the two holes should connect to the 
 same two holds the test stand was supposed to connect with and the battery 
 would just slide into the open end. Additionally there were a couple of legs that 
 would be able to satellite the drone when it was sitting. The problems with this 
 design were that the threads in the holes stripped immediately and thus had to be 
 redesigned to allow for a not and bolt solution for future designs. also because the 
 battery produced so much power there was a need for the battery to not be 
 completely enclosed to allow for it to dissipate heat. Therefore a webbed design 
 was used in future iterations. Finally the legs were way too thin and 3d printers 
 had a hard time printing them therefore we switched to attaching legs to the 
 motors. 

 Figure 4.3: Battery pack final design 

 The above design is what we are currently using. It fixes all the above issues and 
 also allows us to be able to attach a test stand to the bottom for testing. 
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 Figure 4.4: roll and pitch test stand design 

 Finally this was the final result of the test stand that connects to the battery back 
 and the drone. This seemed to work the best but due to the massive power of the 
 drone a need for clamps to clamp the plastic down was still needed. 

 If this design was used in the future a need for a metal test stand would be 
 needed for structural integrity and weight. 

 4.3  P  ROPOSED  D  ESIGN 

 4.3.1 Overview 
 An improved quadcopter is needed from the previous models to balance size and 
 computing power. The current model lacks multicore processing ability and has 
 limited customizability for deploying new hardware or software. 
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 Figure 4.5: Proposed Design 

 The diagram, in Figure 4.5 above, shows a high-level overview of the system we 
 are implementing. The PC runs the ground station software using either a CLI or 
 GUI to send commands. The commands are sent over bluetooth to the Raspberry 
 Pi Zero 2W mounted on the quadcopter. The microprocessor is running the flight 
 controller using inputs and outputs from a circuit board our team designed. 
 When calibrating the quadcopter it is mounted to a test stand which uses an 
 encoder and Arduino nano to log position and rotation data back to the PC. This 
 data is useful for tuning different control parameters in the quadcopters 
 firmware. 

 A new design can be used to solve these problems, as well as enhance the drone’s 
 capabilities. Our new design will make the following improvements while keeping 
 the capabilities of the previous model. We will make a small form factor drone 
 with a carbon fiber frame making it robust to falling or crashing into things. This 
 drone will also be capable of more complex computation by using a full processor 
 like that of a Raspberry Pi Zero or Zynqberry Zero. To give the microprocessor 
 the ability to fly the microcontroller will be attached to a custom PCB board to 
 breakout its connections and interface it with flight systems. The first flight 
 system is an IMU sensor which provides the flight controller with information 
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 about the quadcopters orientation and rate of rotation. The second part of the 
 flight system is the ESC, or electronic speed controller, which is how the 
 quadcopter sets the speed of the motors. In order to power the flight systems a 5V 
 regulator will be placed on the main board. The 5V regulator will be attached to a 
 3S battery which powers the ESC directly and all other systems through the 5V 
 regulator. These quadcore solutions will enable researchers and students to run 
 their software on a more sophisticated operating system. The motors will be 
 brushless dc motors rather than brushed dc motors to improve the dynamic 
 performance of the drone as it flies. 

 Beyond just a new quadcopter design, we will also be enhancing the existing 
 software and simulation software. For the main PC side software, we will be 
 finding various GUI, reliability and speed improvements that we can make as 
 time goes on. Changes to the GUI include user experience and user interface 
 enhancements made to improve the overall lab experience for students. These 
 changes range from adding more convenient buttons to perform certain tasks to 
 adding functionality for increased speed. For the drone side, we will be trying to 
 run the drone using three cores to host Ubuntu and a single core running the 
 flight controller to interface with the flight systems. 

 4.3.2 Detailed Design and Visual(s) 
 As mentioned above this project is mainly about improving the quadcopter 
 resources that are currently available to students and researchers at Iowa State. 

 Figure 4.6: High Level PCB design 
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 As you can see from above in Figure XX, our proposed quadcopter design uses a 
 Raspberry Pi Zero 2W as the flight controller. The Raspberry Pi does not have the 
 capabilities to operate a quadcopter on its own so we will design a printed circuit 
 board to allow it to interface with an Inertial Measurement Unit (IMU), 
 electronic speed controllers (ESC), and various expansion decks. 

 The quadcopter is composed of several manufactured quadcopter parts. The 
 battery used is a 3S LiPo battery, for racing drones, capable of high current 
 output. The propulsion is 3” propellers mounted to brushless DC motors for 
 reduced noise and increased controllability. The ESC used to drive the motors is 
 the Mamba Mini 4-in-1 F30 ESC and the phase is shifted on the front right and 
 back left motors to swap their direction of rotation. The LiPo battery is connected 
 directly to the ESC through a XT30 connector and a 47uF high-speed capacitor is 
 placed across the terminals to reduce variable current draw. 

 The first part of the custom system to consider is power. The ESC connection to 
 the main board provides a PWM channel for each of the motors and provides the 
 power input to the PCB. The power connection is toggled by a switch extruding 
 from the front of the quadcopter for easy access to power down the drone. The 
 switch must be easy to reach in case the quadcopter becomes uncontrollable. The 
 battery power is then filtered with a power line ferrite bead before reaching the 
 5V regulator. A switching power supply was chosen due to the high power 
 efficiency requirements of a battery powered quadcopter. The power supply is 
 rated for 3A to provide adequate power to the Raspberry Pi, PWM controller, and 
 any expansion decks. The Raspberry Pi includes an onboard 3.3V supply which is 
 used to power the IMU. The PWM controller and the IMU are connected back to 
 the Raspberry Pi over I2C. The IMU has its own structure of reading and writing 
 various registers to configure the accelerometer and gyroscope which is described 
 in the parts datasheet. The PWM controller is a Seeduino supported by the 
 Arduino platform. The Seeduino firmware was designed to output hardware 
 generated PWM signals to the ESC since the Raspberry Pi is limited to two PWM 
 channels. The Seeduino is connected to the Raspberry Pi over I2C and takes four 
 16 bit unsigned integers as input and assigns a value to each motor. Four LEDs 
 are included on the board, one in each corner, with red LEDs in the front and 
 blue in the back. The LEDs can be flashed by the microprocessor to display 
 various error messages. 

 The flight controller software operates by periodically reading the sensor data 
 from the IMU over I2C. The sponsor data is used for state estimation of the 
 quadcopters attitude. The data is used in a PID controller where the recorded 
 data is compared to a setpoint from the Ground Station PC software and the error 
 is calculated. The error value is scaled based on PID values discovered through 
 tuning on our 3D printed test stands. The test stands limit the quadcopter’s range 
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 of motion to only yaw, pitch, or roll depending on the configuration. A properly 
 tuned PID controller will calculate the motor outputs to achieve the designated 
 setpoint and the values are sent to the PWM controller over I2C. The PWM 
 controller adjusts the duty cycle of the PWM wave for a motor channel based on 
 the motor’s specified output and the ESC will adjust the RPM accordingly. 

 The setpoints used to control the quadcopter are sent from the Ground Station 
 software on a local PC. The project is configured to run off the existing crazyfly 
 firmware so the communication pipeline was intended to be replicated. The 
 crazyflie python library allows for communication between a Ground Station PC 
 and another device through a TCP socket. The setpoints and other information to 
 configure and operate the drone are sent through cflib (crazyflie python library). 
 A python script running on the Ubuntu cores of the Raspberry Pi Zero 2 W 
 capture this data and pass it to the FreeRTOS baremetal core where it is piped 
 into the program as if it was directly communicating with the crazyflie as normal. 
 The data being sent back to the Ground Station would follow a similar pipeline 
 where it is passed to the Ubuntu cores through shared memory and is 
 transmitted back to the Ground Station as if it were receiving information 
 directly from a crazyflie. 

 Figure 4.7: Preliminary Schematic 
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 Shown above is the final schematic of the breakout PCB including the power 
 management, Pi connections, external connections, and an inertial measurement 
 unit. 

 4.3.3 Functionality 
 As mentioned above, our design is specifically targeting researchers, CPRE 488 
 Students, and EE476 students. It is intended as an opportunity for students to 
 work on a real world embedded systems application while combining their 
 hardware and software skills. Students will have the opportunity to put programs 
 on the drone to directly control the functionality of the drone. They can control 
 the drone with a radio and test it on the test stand. Additionally they can simulate 
 it on MATLAB and test out their program before applying it to the drone.  This 
 can all be done on an easily accessible GUI that we will develop. 

 A student in CPRE 488 might first start with our simulation to simulate different 
 PID values of the quad copter and to see what happens when you adjust these 
 values. After mastering this part they will then move on to the drone, booting 
 their software onto the drone using our intuitive GUI. This process will hopefully 
 be very easy to follow for the students and make a lot of sense.Then the students 
 can test their PID values or other research on the test stand to make sure that the 
 drone is working properly. Finally they are able to control the quad copter using a 
 joystick through the air.  There are a couple of other functionalities however we 
 are trying to make this as functional and as seamless as possible for students. 

 4.3.4 Areas of Concern and Development 
 We believe that based on the background our client has given us, and our 
 continued meetings with them that our proposed design will satisfy the vast 
 majority of user needs. Our understanding of user needs includes a better 
 functioning 488 lab, a drone that offers more fine grained control, as well as 
 greater computational power, and a simulation environment that would enable 
 students and researchers to test their control algorithms in a low stakes 
 environment. 

 To meet project expectations, specific areas of development from the GUI that 
 students interact with, to the hardware that will enable greater computation and 
 control, to the Simulation environment have been delegated among team 
 members. 
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 Our biggest concern when it comes to this is to stay on our timelines to ensure 
 these tasks actually get done. We tend to be a pretty busy group, and so making 
 sure that everyone actually finds time to work on the project has been a bit of a 
 challenge. We do also have some pretty regular questions for our clients mainly 
 focusing on what types of components they wish for us to use. We believe that by 
 regularly meeting, asking questions and by continuing to address issues as we see 
 them, we can surpass any and all of these issues and build a successful project. 

 4.4 T  ECHNOLOGY  C  ONSIDERATIONS 

 The design will use a Raspberry Pi Zero 2W for the main computing unit on the 
 quadcopter. This is a lightweight computer with a Quad Core processor and easy 
 GPIO breakout and control. The small scale of the board allows for mounting on 
 the quadcopter frame. The Pi Zero only has 2 hardware PWM channels and 4 are 
 needed to control the quadcopter, however the variable usage GPIO pins can be 
 used to create software based PWM channels which would allow for full control 
 of the motors. Currently there is a potential setback depending on the 
 performance difference between the software and hardware PWM channels. If 
 this is the case a PWM expander IC will be needed to control all 4 motors. 

 4.5 D  ESIGN  A  NALYSIS 

 The Ground Station GUI has been altered to improve user experience. Feedback 
 detailing CPRE 488 students’ experiences with the GUI were recorded by last 
 year’s MicroCART. Adjustments were made to adjust key issues like not 
 automatically connecting to the backend and the painstaking process of resetting 
 PID values. When the GUI starts up, the first thing users must do is navigate to 
 the backend tab and press connect. Forgetting this step causes the GUI to crash 
 so the software was changed to eliminate the step and reduce crashes experienced 
 by students. The lab requires the setting of eighteen different parameters for 
 flight control and upon a power cycle all parameters must be reset. The process 
 was irritating to use so a JSON file was created to house the key parameters. A 
 button allowed the automated setting of all eighteen values helping students save 
 time and conveniently record their values. The lab was run during the spring 
 semester and while additional feedback of ways to improve was recorded the 
 overall response to the lab’s enjoyment and ease of use was improved from the 
 prior year. 

 A new medium sized quadcopter was constructed and tested for flight capability. 
 The manufactured quadcopter parts were first assembled and connected to the 
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 main board. The PCB was altered to allow the quadcopter to be controlled by a 
 crazyflie equipped with the BigQuad deck. The assembly provided a test bench to 
 check all hardware was working properly with working software. The quadcopter 
 had the flight controller’s PID values tuned using the different 3D printed test 
 fixtures we designed. Once the flight controller was properly tuned, a controlled 
 flight was conducted by suspending the quadcopter from the ceiling with an 
 elastic strap tied to the ground. The hover thrust was established using the 
 described test set up and proper movement in the XY directions was confirmed. 
 After the operation of the flight controller was evaluated, we began an 
 unrestricted flight test. The quadcopter hardware is capable of controlled indoor 
 flights as shown in our demonstration. 

 The quadcopter firmware continues to progress. The Raspberry Pi Zero 2W was 
 configured to communicate with a Ground Station over wifi and dummy packets 
 were set to test the interface. This works through the existing crazyflie python 
 library interfacing methods. A python program on the Raspberry Pi replicates the 
 “crazyflie” and passes on information it gets from the Ground Station to the 
 Drone Firmware and vice versa. For best performance, the flight controller needs 
 to be hosted on a single core of the Raspberry Pi with the other three running 
 Ubuntu to handle wifi connection. This allows for the easy network interfacing 
 options provided within the Ubuntu OS instead of having to implement a 
 network connection on the baremetal level.  The firmware team continues to 
 work on compiling the FreeRTOS flight controller and deploying the 
 implementation to the Raspberry Pi. They have followed several example 
 repositories which are included below for further reference. 

 https://github.com/TImada/raspi4_freertos 

 https://github.com/eggman/FreeRTOS-raspi3 

 The first example provides insight on how to implement the Ubuntu and 
 FreeRTOS system with in depth detail however the platform the program is 
 intended for in a Raspberry Pi 4. These run on a different processor than the 
 Raspberry Pi Zero 2 W. The next example is for a Raspberry Pi 3, which runs on 
 the same processor as the Zero 2 W which provides insight on how to adapt the 
 first program to meet our processor needs. The system works by loading a 
 compiled FreeRTOS program into an Executable and Linkable Format (.elf) file 
 that is loaded into memory and initialized to run on boot of the board. This will 
 run on one core as stated above for optimal computing resource allocation. The 
 FreeRTOS program is cross compiled from a development machine and loaded 
 into the bootable partition of the Pi Zero 2 W micro sd-card. 

 U-Boot is installed and built from source here  https://github.com/u-boot/u-boot 
 using the same cross compiler. U-Boot is a customizable bootloader program that 
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 is commonly used in embedded devices to allow packaging boot instructions to 
 configure the device's operating system kernel for desired runtime operation. 
 This will allow for the desired boot configuration with one core running 
 FreeRTOS baremetal and the other three running a lightweight Ubuntu 
 environment. 

 Current development status of the firmware is loading the compiled FreeRTOS 
 program into the system memory so it can be configured by Linux on boot. The 
 team has struggled mapping the digital file to its corresponding physical memory 
 location. The firmware has been altered to interact with the new hardware drives 
 such as the PWM controllers and is now awaiting testing upon completion of the 
 setting up the boot configuration. These interfaces with the microprocessor have 
 been tested and the quadcopter should work properly after these final steps are 
 completed. This can be seen and confirmed with the usage of the crazyflie Big 
 Quad Deck which allows the usage of the crazyflie microcontroller instead of the 
 Raspberry Pi. This attaches a crazyflie to the MicroCART drone and uses the 
 crazyflie hardware to send, receive, and process data, but uses the MicroCART 
 drone hardware to physically move in 3D space. 

 5  Testing 

 5.1 U  NIT  T  ESTING 

 ●  Each component used on the boards will have both their inputs and 
 outputs tested.  This ensures that on the component level everything will 
 work. Then we can test the microcart on a system level. Because our 
 project is very broad and contains many different subsystems we have to 
 test many different components to make sure the whole system works. 

 ●  For the PWM expansion deck, we sent a “fake” packet to then see if it gets 
 correctly parsed to each pin and value. We can also see if the correct PWM 
 outputs are set. We will be using a usb with it connected to ubuntu to be 
 sending the packets. 

 ●  IMU was tested by reading the outputs based on the positioning of the 
 imu. This can be done through the terminal on the pi or through a 
 picoscope. 

 ●  Telemetry can be tested by logging the values the device experiences 
 within the device itself, and also logging the values received over telemetry 
 and comparing them. We can also use timestamps to test its frequency. 
 This can also be tested on the pi. 

 ●  Main PCB is tested by first checking the resistance across the power rails 
 to ensure the power supply is not shorted. A 12V power supply is then 
 attached to the board and the 5V supply measured using a multimeter. The 
 voltage level should be 5±0.05V. Once the 5V supply has been verified, the 
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 5V supply is attached to a load test drawing two watts. After the operation 
 of the 5V supply is validated the Raspberry Pi is attached. The 3.3V supply 
 can then be tested using Pin 1 of the IMU slot. 

 ●  Our overall drone hardware and ESC can be tested by implementing a 
 crazyflie BigQuad board with the drone frame and motors to test that the 
 software and external hardware works. 

 ●  GUI can be tested by doing extensive usability testing. 
 ●  The simulation will be tested by creating unit test demo files for each 

 individual component, from low level through system integration. We will 
 then also test many individual parameters that define the drone. We will 
 plug these parameters into the simulation and compare the simulated 
 values to telemetry values to determine the effectiveness of the match. We 
 will use the same control algorithm for the drone in the simulation as we 
 do in real life. 

 5.2 I  NTERFACE  T  ESTING 

 I2C is used between the IMU and the Pi and the Pi and the PWM expansion. To 
 test this we will run a program between the IMU and the PI to make sure that 
 they interfacing correctly with one another. These tests will confirm functionality 
 of these two modules within the entire system. 

 The ground station software and bluetooth are being used to connect the GUI to 
 the drone itself. This will be tested by making sure data is being received from the 
 drone and it constraints the correct information. Some of the data that we receive 
 is the sensor data, the gyro and the accelerometer on the IMU. 

 Additionally there are many modules that communicate with each other. All of 
 these will need to be thoroughly tested. 

 ●  Commands will be sent to the Raspberry PI Zero II W, over BLE, to blink test 
 LEDs in order. The test will be repeated over WiFi to confirm both BLE and 
 WiFi communication. 

 ●  The drone will have its gyroscope data logged over bluetooth. The drone will 
 be placed on the test stand and rotated to confirm valid values are being read. 
 The test stand has different configurations allowing the reading of the x,y,z 
 axis of rotation. 
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 Figure 5.1: Test stand for roll 

 ●  IMU data to the breakout board then the PWM breakout board and then the 
 PI 

 ●  The interface between the Raspberry PI Zero II W and the ESC is the PWM 
 board. The XIAO SAMD21 acts as the interface and reads I2C data to set the 
 output of 4 PWM channels. The interface will be tested by increasing the duty 
 cycle to rev the motors. 

 5.3 I  NTEGRATION  T  ESTING 

 ●  Integration of the PI and the PWM expansion will need to be tested. We will 
 send a command over I2C to set PWM0 to 50% duty cycle. The duty cycle of 
 the waveform will then be measured using a Picoscope. The duty cycle will 
 then be set to 75% and validated with the Picoscope, then repeated at 25% 
 duty cycle. The duty cycle will then be swept from 0-100% duty cycle. The test 
 will be repeated for the remaining three PWM channels. 

 ●  Integration of the IMU and the PI will need to be tested. The PI will be 
 configured with a test program streaming gyroscope and accelerometer data 
 back to the PC. The IMU will be placed on a flat surface so it can calibrate and 
 the gyroscope and accelerometer should read near zero values for all data 
 besides the accelerometers z value representing the force of gravity. The IMU 
 will be placed on its side so gravity is completely in the x direction, then 
 placed on the other side for an acceleration completely in the y direction. The 
 gyroscope will then be tested by rotating the IMU around the board's z-axis. 
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 The data will be checked to validate a positive value for counterclockwise 
 rotation and a negative value for clockwise rotation. The test will be replicated 
 for the x- and y-axis. 

 ●  Integration of the ground station software and the drone will need to be 
 tested. The compatibility of the ground station software and the drone will be 
 tested by completing the MP-4 lab experiment using the new drone. The lab 
 experiment requires setting parameters and setpoints on the drone and will 
 thoroughly test the combination of the two systems. 

 5.4 S  YSTEM  T  ESTING 

 ●  The drone must be able to hover in place for 10 seconds with a minimal 
 acceptable amount of moving. This will be used to test the control loop, the 
 state estimation algorithm, and the motor control. Additionally this will test 
 how easily the drone can be controlled through the GUI. We want to make 
 sure there is no lag from our commands to the drone movement. 

 ●  The drone must be able to maneuver correctly through a more complicated 
 specified series of setpoints repeatedly when configured with the correct PID 
 values. (10 times in a row without issues). This can test how easily our 
 simulation can be transferred to the drone as well as testing the autonomy of 
 the drone without user input. 

 ●  The ground station must be able to successfully and consistently 
 communicate with the drone. This shall be specified by experiencing no issues 
 for 5 battery life cycles in a row, on multiple drones. 

 ●  The drone should be able to be programmed with PID values on the ground 
 station with minimal issues. It should also be able to be commanded from the 
 ground station with minimal issues during this time. This shall be tested by 
 tuning a few PID values, getting and setting each parameter, and applying 
 setpoints at each iteration. This test shall be run on multiple drones, on 
 multiple laptops. 

 ●  We can test our safety features by hovering, then hitting the kill switch, 
 removing the battery while the drone propellers are still moving and testing 
 the kill switch on the PCB. During an autonomous flight there will also be 
 checks to make sure if a waypoint is outside of a safe range it will not allow the 
 drone to go that far. 
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 5.5 R  EGRESSION  T  ESTING 

 With all of these testings we will be using GIT for all the software to make sure 
 that we can go back to older versions if we end up changing something. 
 Additionally for the hardware for final l PCB we have many detachable modules 
 and test points that will make debugging  and fixing and functionality within 
 these components. 

 The requirements that are critical to our project are: 

 ●  The communication latency must be under 100ms for 10,000 telemetry 
 messages in a row. 

 ●  The drone must be able to hover in place for 10 seconds. 
 ●  The control loop must respond in an expected manner to the inputs given. 
 ●  The state estimation algorithm must determine the state of the drone within 

 an acceptable range of error. 
 ●  We set up a series of automated unit tests that tests much of the functionality 

 outlined above for software changes. We can run these tests as time goes on to 
 confirm continued functionality. 

 Without these features our drone will not meet the specifications defined by our 
 client as well as the drone will not be able to fly correctly. 

 When performing these tests we have met each of these requirements using the 
 big quad deck.  We were able to fly and with the correct tunings of the PID were 
 able to fly deftly and with a latency of less than the required amount. This is 
 mainly because we redid the GUI and backend to make it much faster. 

 5.6 A  CCEPTANCE  T  ESTING 

 Through our project acceptance testing will be conducted as our last step of our 
 design process. This will be conducted on a large scale to see if our drone’s 
 system will meet the requirements of our client, Dr. Jones. Dr. Jones can 
 evaluate our drone by flying it, Using the GUI, using the simulation tools and 
 talking with students who will be using our drones within 488. After Dr. Jones 
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 surveys students, we get feedback on the problems they experienced in the lab 
 and how our solution can be improved.  Finally we can evaluate how well we 
 increase the documentation for drone technology at Iowa state by the amount of 
 people who find our tutorial videos helpful. These videos will be demonstrating 
 an overview of our implementation and will communicate with our users on the 
 structure of our design and its performance. 

 As of this moment we are still in the process of acceptance testing. We have been 
 evaluated on our 488 progress and there were alot more changes that were 
 needed then what we had provided. As far as the tutorial videos we will have to 
 see how the next year's team finds these helpful. 

 5.8 R  ESULTS 

 We have effectively tested the new drone and with the crazyflie Big Quad Deck we 
 can effectively have an extremely good quad that can hover in place for a lot more 
 than just 5 seconds. These flight tests confirm the hardware operation of the 
 drone as well as provide insight on the usability and functionality of the Ground 
 Station communicating with the drone. The Big Quad Deck allows the usage of 
 the crazyflie processor and firmware to control an external piece of hardware. It 
 is configured to send, receive and process data as if it's a crazyflie, but interface 
 with the MicroCART drone hardware moving it in 3D space. 

 The communication pipeline has been tested using the crazyflie python library 
 and the Raspberry Pi Zero 2W. We are able to successfully send data quickly 
 through an established TCP socket over the wireless IASTATE network. This 
 allows for fast and reliable communication between the Ground Station and the 
 MicroCART drone while on the Iowa State campus. The Big Quad Deck was also 
 used to confirm device connectivity as it allowed pycrocart and the MicoCART 
 Ground Station to communicate with the hardware of the MicroCART drone 
 which data transfer speeds within the tolerable range for gamepad controlled 
 flight. The performance of the drone reflects that of the crazyflie, but with more 
 room for improvement and an upgrade in system integrability. 

 The MicroCART Ground Station improvements have increased usability and 
 reduced student frustration with known issues in the 488 lab. The MicroCART 
 team worked to integrate the new changes and worked to troubleshoot issues as 
 they appeared in the lab. Resources were also created that walked students 
 through the technical components of the crazyflie drone which help increase 
 understanding in turn helping with lab completion. The full results from the lab 
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 documentation and GUI interaction usability study can be found on the 
 MicroCART GitLab page. 

 6  Evolution of design since 491 
 There have been many major changes in the senior design project since 491. One 
 of the earlier and biggest changes has been with the GUI for the CPRE 488 lab. 
 New features have been added such as the JSON parameter file upload options 
 which allows the user to set parameters all at once by editing a JSON file. With 
 this, came a progress bar and an auto connect to backend feature. Outside of this, 
 the lab documentation for the CPRE 488 lab was updated to clarify missing 
 details from the previous semester. Additionally we created a new test stand to 
 adapt the lab to allow students to create a potential controller instead of the basic 
 roll, pitch yaw. Along with the test stand, new improved edits to the code that 
 connected with the test stand allowed students to tune their PID values with a 
 higher degree of fidelity then what was previously available. 

 A lot of focus was put into the new drone. On the hardware side, we worked on 
 wrapping up our breakout board. The initial design focused on allowing the 
 Raspberry Pi to interface with the sensors and motors needed for flight. Crazyflie 
 expansion decks provide the capabilities to upgrade quadcopters by choosing 
 from a variety of decks for position tracking and object avoidance. A range of 
 UART, SPI, I2C, and GPIO connections are required to support all decks. The 
 board was upgraded to four layers to accommodate the addition of numerous 
 data lines while maintaining routability and signal integrity. The decks must be 
 mounted on the top or bottom of the quadcopter so an expansion board was 
 required for socketing the decks and connecting signals back to the main board. 

 To integrate the hardware with the software, the protocols to communicate 
 between the ESCs and the motors were figured out through the I2C protocol. The 
 exact duty cycles and PWMs were figured out to control the motors with 
 precision. In order to have software to interact with it, we attached a crazyflie 
 board to do preliminary testing with the drone. This tuning would be pivotal to 
 being able to fly the drone. A test stand was updated to handle the new drone’s 
 power and fit the new chassis. While this was happening, changes to the 
 communication protocol and hardware were changing. Moving from a crazyflie 
 2.1 board to Raspberry Pi Zero 2 W brought challenges. Eventually 
 communication between the pi and computer were made. The quad core 
 computer had 3 cores running Ubuntu and a single core for the FreeRTOS 
 firmware running the crazyflie firmware. 
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 7  Professional Responsibility 

 7.1 A  REAS  OF  R  ESPONSIBILITY 

 For the most part the IEEE code of ethics does not differ from the NSPE version 
 for each area; however, for financial responsibility, it focuses more on motives 
 behind work rather than the waste of money. Also, for property ownership, IEEE 
 wants people to understand that there is new work emerging rather than focusing 
 on giving credit to the individual’s work. 

 7.2 P  ROJECT  S  PECIFIC  P  ROFESSIONAL  R  ESPONSIBILITIES  A  REAS 

 Work Competence is high for our project because we are producing a product 
 that is buggy at the moment, but the goal is for it to be used for other classes and 
 researchers, so our work should be at the highest level since others will be using 
 our product. Also, we are representing Iowa State, so we should show the quality 
 of work produced out of Iowa State. Financial Responsibility is medium because 
 we do not want the drones to be very costly since there will be more than one 
 drone being produced; however, it is not a huge focus in our project. 

 Communication Honesty is high because we are working with an advisor who has 
 been on this team for many years, so he has a lot of good advice to give us. Also, it 
 is important to keep other team members informed as well as our advisor/client. 
 Health, safety, and well-being has a high importance because we are working 
 with drones that are considered a flying hazard. We do not want to have a drone 
 that may fly into someone and injure them. Property Ownership is medium 
 because we want to give credit to open source code, but we are also working on 
 moving away from open source to using our own code. Sustainability is low 
 because the drones we are building will be used in a classroom setting. Social 
 Responsibility is of medium importance because we are building something that 
 will benefit the Iowa state ICpE community, but other than that, there are no 
 current plans for this to be used outside of Iowa State Classrooms. 

 Currently, our team’s work competence is performing at a medium level, mainly 
 because we were slow to start working because we had to wait for parts to come. 
 We are slowly getting more involved with our work so the level is getting close to 
 being considered high. We are not very conscious about our financial 
 responsibilities so it is low. Our communication honesty is high because we meet 
 with our team a lot and with our advisor weekly. Also, we have a discord set up to 
 allow for virtual communication. We understand that drones are dangerous so 
 the level is medium. Our property ownership is medium just because we have not 
 started developing any code yet, but we have reviewed all of the previous 
 developed code from years past. Sustainability is N/A since this has not been a 
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 concern for our team. Lastly, our social responsibility is at a medium mainly 
 because we know the purpose of our project, but some of us have not taken the 
 class that these drones are used for so we do not know the current challenges in 
 the class. 

 7.3 M  OST  A  PPLICABLE  P  ROFESSIONAL  R  ESPONSIBILITIES  A  REA 

 We think that our communication honesty has been critical to our project, and 
 our team has been doing a relatively good job with it. This is important because 
 this project has been ongoing for many years, so there is a lot to learn about it, 
 and there is a lot to communicate about with our advisor who is also our client. 
 Our communication has been really good with our advisor as well as with our 
 team which has led to being able to solve problems quickly while also being able 
 to move forward more quickly. Additionally with communication comes 
 documenting the steps. As Microcarts work continues on for many more years 
 our group needs to leave this project in a place where it can be easily adapted. 
 This is done by creating many transition documents that we made including, 
 MP-4 boot camp, pyrocart readMEs, GUI documentation  and many youtube 
 videos all for the future teams to watch and get up to speed on what we have 
 accomplished. 

 8  Closing Material 

 8.1 D  ISCUSSION 

 As of right now, the results of our project are still a bit underwhelming. We have 
 successfully flown our new drone however we have yet to have the multi core 
 functionality that we discuss above. We wanted to get to a point where we could 
 fly the drone via the pi but due to unexpected issues we didn’t get there. 
 Additionally we didn’t leave enough time to order another revision on the PCB to 
 make a better expansion boards. On a positive note the drone flies very stable and 
 can be controlled using a gamepad. We also developed new test stands to test the 
 PID values and are able to isolate a single axis for tuning.  Finally we were able to 
 help with the 488 lab and give ideas for next year on how this can be improved. 

 8.2 C  ONCLUSION 

 While we know we would have loved to do more with this project, we have put a 
 total of over 1200 hours into this project and are extremely happy with the level 
 of progress we completed  while we didn’t accomplish all of our goals we think we 

 34 



 established a good starting place for the future teams to be able to pick up where 
 we left off and continue on with our work. 

 The goals for our project are to improve the 488 lab experience, and to build a 
 platform that would be attractive to researchers seeking to conduct studies on 
 quadcopters. To improve the experience, we will improve the physical design of 
 the drone, update the user-interfaces of the GUI, ground station and drone 
 software.  We also seeked to improve the current simulation support to better 
 match both our drones, and researchers' needs. We accomplished this by creating 
 more resources for the simulation and a demo of which we showed to future 
 students. 

 One of our biggest challenges is time management and procrastination. When 
 you look at the total number of work hours comparatively of this semester then 
 last semester you will see that we put significantly more time this semester into 
 the project. You will also see that most of our major accomplishments and 
 achievements happened within the spring semester as we found our footing and 
 really put in a big push to accomplish our goal. However this was done too late 
 and just didn’t allow us enough time to really get to where we wanted. 

 The hardware on the flypi was one of our great successes as it matched all of our 
 goals and was able to do everything we wanted. We were able to tune the PID 
 values with a new test stand and with the PCB create a way that research could be 
 done on it. 

 Overall we think we left the project in a place that can be continued in the future 
 and we are all very proud of what we accomplished. We hope that in some way we 
 lived up to the expectations of the microcart team and will be able to look back at 
 the work we have done and see the revisions and additions that were made. 

 8.3 Appendices 

 A  PPENDIX  1: D  EMO 

 This appendix is going to show how to demo our new drone and how to use it in 
 its current state.  As mentioned above the idea was to have it run with the PI 
 however this was unable to be accomplished. Therefore our final demo is running 
 the crazyflie software with our hardware, independent of the pie. Using the 
 crazyflie big quad deck allows the bitcraze software to interface with our drone 
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 thinking it's interfacing with a crazyflie when in fact it is interfacing with a much 
 bigger drone. As this drone will hopefully be used in a future senior design teams 
 project all of this is documented on our gitlab page for MICROcart and on our 
 website. 

 1.  To start the demo you must have a full 4s battery. Charging these batteries 
 can be done by watching  this 
 (  https://www.youtube.com/watch?app=desktop&v=p8OzEviW29A&ab_c 
 hannel=MaxAmps.com  ) 

 video and using the charger within the Coover 3050 lab. These batteries 
 usually last only 10 minutes of flying and take about 30 minutes to 
 recharge. 

 Then you will need to connect the battery to the the drone 

 Figure A1.1: Battery connection 

 3. Now you need to interface with the drone this can be done with a  couple of 
 ways. The team created a new GUI outside of the MicroCART infrastructure that 
 works really well when interfacing with the drone. 

 Pycrocart is a python implemented GUI that rather than interfacing with the rich 
 MicroCART infrastructure of the backend and the rest of the quads, is connected 
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 only to cflib which can be used to connect to crazyflie based quadcopters. While it 
 is intended to eventually be slotted into the Microcart infrastructure, it is also 
 able to function without it. This allows it to be used both as a debugging tool to 
 define whether a bug exists in the backend, or the GUI. It also eliminates a many 
 year buildup of technical debt and poor documentation in the GUI. Furthermore, 
 in case the backend still has lots of issues like it does for our team (sdmay23), but 
 you still need to run MP4 with crazyflies, you can use this GUI to act as a more 
 stable version which will hopefully allow students to complain less about random 
 crashes and more about how they can't get their PID to work the way they think it 
 should. 

 Pycrocart is implemented using PyQT, and it uses cflib in order to integrate with 
 a crazyflie. The intention is that we will be able to use the TCP connection 
 example that bitcraze offers in order to connect to the FlyPi as well. This will be 
 easier to implement than connecting to the MicroCART backend, which should 
 be the ultimate end goal. 

 Furthermore, while the bitcraze vm is nice, this GUI runs 100 million times faster 
 and silky smooth when not on a VM. Whether this is a linux issue or a VM issue 
 I'm not sure yet, but I'd highly recommend not running it on the VM. 

 Requirements 

 Developed with Python 3.10 64-bit on Windows 10 in Pycharm 2022. 

 Library requirements can be installed in a venv via requirements.txt. 

 pip install -r requirements.txt 

 Or you can use Pycharm to install the requirements by browsing into any .py file. 
 This is what is probably easiest. 

 How to run 

 Pycrocart was developed in Pycharm and will work best when used in pycharm. 
 As of right now, in order to use it you must have a crazyradio plugged into your 
 computer, and a drone turned on and on the same uri as said in the __ main__ 
 function. The default right now is 120 which is what the fly pi runs at. Hopefully 
 we will have a connect button soon so that you can start the GUI up and connect 
 to a crazyradio dongle and drone during runtime. 
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 In order to run the program from the command line enter: 

 python ./Pycrocart.py 

 This will execute the program and if all went well you should see the GUI appear. 

 Figure A1.2: Pycrocart GUI 

 You can also run it from Pycharm by clicking the run button near the 
 __ main__ function inside the Pycrocart.py script. 

 How to use 
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 The pycrocart GUI has several windows: the controls window, the gamepad 
 configuration window, the logging configuration window, and the parameter 
 window. 

 Controls Tab 

 Seen above, the controls tab is the first page shown when entering the GUI. The 
 controls tab features a setpoint menu which allows the user to send setpoints of 
 thrust, yaw, pitch, and roll. It can do this in rate mode (yaw rate, pitch rate, roll 
 rate) or attitude mode which controls the raw angles themselves. When gamepad 
 mode is enabled the setpoints enter a "mixed" control mode. This lets the pitch 
 and roll angles be set directly but the yaw is not. Instead, the user controls the 
 yaw rate, and the controller will hold the yaw angle it accumulates to. 

 Also in the controls tab is a logging selection menu. This allows the user to select 
 up to 5 logging signals to plot in the plotting window which covers the entire 
 right-hand portion of the controls tab. 

 Gamepad Configuration Tab 

 Seen below, the gamepad tab is used in order to configure the gamepad to detect 
 each axis of control correctly. The detect button is used in order to detect when a 
 joystick or button is pressed. This is a copy and paste of the gamepad 
 configuration tab in cfclient. If you would like more documentation of how to use 
 it please see the bitcraze wiki. As of right now, in order to use a gamepad, it must 
 be connected to the computer at launch of pycrocart. The logitech controller has 
 been saved, at least on my computer as logitech. Theoretically, other controllers 
 can be connected as well but this has not been tested by me. 

 To connect a controller once the program is running, click configure, select 
 logitech from the combo box at the bottom of the page and click load to load the 
 logitech controller configuration. You can also save a configuration. If you do not 
 click load, a different mapping of inputs will be used. If you do not click 
 configure, no input from the gamepad will be used. 

 39 



 Figure A1.3: Pycrocart GUI 

 4. After connecting the gamepad you must upload the PID parameter 
 values to the drone by using the .json file 

 Parameter Tab 

 Seen below, the parameter tab is able to be used in order to either set individual 
 parameter values, or whole groups of parameters. There is also a parameter json 
 file which can be opened by clicking edit from the UI. These parameters will be 
 sent to the crazyflie whenever the set params from the json file is pressed. Due to 
 the amount of data being sent, a slight delay has been added to ensure that 
 parameter is set successfully. While there are default groups within the file for 
 attitude rate and attitude PID's, the file is also capable of setting other 
 parameters and groups. Anything that is able to be set from the set parameter 
 interaction is able to be set from the file. 
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 Figure A1.4: Pycrocart GUI, parameter tab 

 The correct .json file to be uploaded for the flypi can be found within the 
 pifly folder under PID parameters 

 4. After uploading you are ready to fly! Make sure to have the necessary 
 precautions in place I.E. netting around the flight area and a good pilot. This 
 drone can cut a finger off so safety is #1 priority. 
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 A  PPENDIX  2: PCB D  ESIGN 

 Rev 1 

 Figure A2.1: Breakout Board Schematic, Rev 1 

 Figure A2.2: Breakout Board 3D View, Rev 1 
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 Rev 2 

 Figure A2. 3: Breakout Board Schematic, Rev 2 

 Figure A2.4: Breakout Board 3D View, Rev 2 
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 Figure A2.5: IMU Breakout Board Schematic 

 Figure A2.6:  IMU Breakout 3D View 
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 Figure A2.7: Expansion Board Schematic 

 Figure A2.8:  Expansion Board 3D View 

 A  PPENDIX  3: L  IST  OF  C  OMPONENTS 

 To determine our different components, we found three options for the majority 
 of sub components on the drone. We tried to find components that would be 
 mostly compatible with each other. We did this to determine the range of options 
 available. Below we have provided the information gathered about our different 
 options. This process allowed us to learn in depth about the different components 
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 of a drone such that we could explore different ideas simply through finding the 
 options available. 

 Frame 

 Motors 

 Battery 
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 Propellers 
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 Regulator 

 IMU 

 4.2.3 Decision-Making and Trade-Off 
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 The way we determined the best parts to use was by laying the options out next to 
 each other as seen in the section above, along with listing the pros and cons of 
 each item. We then chose the parts that best conformed to what we thought was 
 beneficial, and conformed with the clients desires. We confirmed that they met 
 our clients desires by showing them the options and picking items we all agreed 
 on. Below is the full document showing the pros and cons, along with the options 
 we used. The highlighted options are the choices we ended up deciding on. 

 Frames 
 Option #1 
 https://newbeedrone.com/products/newbeedrone-cinemah 

 Pros 
 ●  Should have sufficient space 

 Cons 
 ●  Little too big 
 ●  Reviews claim it is fragile 

 Option #2 
 https://newbeedrone.com/collections/whoop-fpv-drone-frames/products/cockr 
 oach75 

 Pros 
 ●  Ideal size 
 ●  Different Color Options 
 ●  Infinite Warranty 

 Cons 
 ●  Does not have enough space 
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https://newbeedrone.com/products/newbeedrone-cinemah
https://newbeedrone.com/collections/whoop-fpv-drone-frames/products/cockroach75
https://newbeedrone.com/collections/whoop-fpv-drone-frames/products/cockroach75


 Option #3 
 https://www.getfpv.com/geprc-cp-2-frame-kit.html?gclid=CjwKCAjwhNWZBhB 
 _EiwAPzlhNqbRsqpoqXHjO5L13oLDAjFPiIHzGB3xWbvz65zwj-5GQwNiQD_op 
 BoCokoQAvD_BwE 

 Pros 
 ●  “Minimal” size to fit pi zero 
 ●  Looks like butterfly 

 Cons 
 ●  Lots of pieces, requires assembly 
 ●  Too heavy? 
 ●  Recommends 4S battery 
 ●  H-frame 
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https://www.getfpv.com/geprc-cp-2-frame-kit.html?gclid=CjwKCAjwhNWZBhB_EiwAPzlhNqbRsqpoqXHjO5L13oLDAjFPiIHzGB3xWbvz65zwj-5GQwNiQD_opBoCokoQAvD_BwE
https://www.getfpv.com/geprc-cp-2-frame-kit.html?gclid=CjwKCAjwhNWZBhB_EiwAPzlhNqbRsqpoqXHjO5L13oLDAjFPiIHzGB3xWbvz65zwj-5GQwNiQD_opBoCokoQAvD_BwE
https://www.getfpv.com/geprc-cp-2-frame-kit.html?gclid=CjwKCAjwhNWZBhB_EiwAPzlhNqbRsqpoqXHjO5L13oLDAjFPiIHzGB3xWbvz65zwj-5GQwNiQD_opBoCokoQAvD_BwE


 Specification  CinemAh  Cockroach  GEPRC CP 2" 

 Weight  68g  6.98g  50g 

 Size  150mm  75mm  115mm 

 Motor Size  14xx/20xx  0802  1104~1207 

 Propeller Size  3in/76mm  40mm  2in 

 Price  $89.99  $7.99  $34.99 

 We ultimately chose option 3 because we believe it represented the smallest yet 
 most robust drone frame, at the best affordable price. Furthermore, it was the 
 only design we really believed that would actually fit the footprint of the Pi Zero 
 without interfering with the propellers. 

 Motors 
 Motor selection will be dependent on frame selection. These motors assume the 
 selection of the butterfly frame. 

 Option #1: 
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 Link: 
 https://www.getfpv.com/motors/micro-quad-motors/flywoo-nin-v2-1203-pro-m 
 otor-3400kv-4850kv-5500kv-11500kv.html 

 Specs  Values 

 Weight  4.7g 

 Size  F1203 

 9x9 Mounting?  Says “Standard mounting pattern” 

 KV  3500KV, 5500KV 

 Configuration  9N12P 

 Diameter  16.2mm 

 Shaft Diameter  1.5mm 

 Internal Resistance  - 

 Torque Constant  - 

 Current Draw  1.2A @10V Idle 

 Power Draw  - 

 Battery  3-4S 

 Recommended Propeller Size  Recommended for 2”-3” racing builds 

 Cost Per Motor  $13.99 

 Pros 
 ●  Customers seem happy 
 ●  Max battery power 
 ●  More power in small frame 
 ●  Light 

 Cons 
 ●  Slowest option 
 ●  High Idle power consumption 
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https://www.getfpv.com/motors/micro-quad-motors/flywoo-nin-v2-1203-pro-motor-3400kv-4850kv-5500kv-11500kv.html
https://www.getfpv.com/motors/micro-quad-motors/flywoo-nin-v2-1203-pro-motor-3400kv-4850kv-5500kv-11500kv.html


 Option #2 
 Link: 
 https://www.getfpv.com/motors/micro-quad-motors/t-motor-m1106-micro-mot 
 or-6000kv.html 

 Specs  Values 

 Weight  7.2g 

 Size  M1106 

 9x9 Mounting?  Yes 

 KV  6000KV 

 Configuration  - 

 Diameter  16mm 

 Shaft Diameter  1mm 

 Internal Resistance  - 

 Torque Constant  - 

 Current Draw  - 

 Power Draw  - 

 Battery  3-4S 

 Recommended Propeller Size  “Toothpick builds” 

 Cost Per Motor  $13.99 

 Pros 
 ●  Allows for 4S 
 ●  Fastest option 

 Cons 
 ●  Heaviest option 
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https://www.getfpv.com/motors/micro-quad-motors/t-motor-m1106-micro-motor-6000kv.html
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 Option #3 
 Link: 
 https://www.getfpv.com/motors/micro-quad-motors/t-motor-f1203-7000kv-mo 
 tor.html 

 Specs  Values 

 Weight  5.25g 

 Size  F1203 

 9x9 Mounting?  Yes 

 KV  7000KV 

 Configuration  9N12P 

 Diameter  15.5mm 

 Shaft Diameter  1.5mm 

 Internal Resistance  198mOhm 

 Torque Constant  - 

 Current Draw  0.64A @10V 

 Power Draw  192W Max 

 Battery  2-3S 

 Recommended Propeller Size  - 

 Cost Per Motor  $14.99 

 Pros 
 ●  More specs are given 
 ●  Smallest option 

 Cons 
 ●  Only 2-3S 
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https://www.getfpv.com/motors/micro-quad-motors/t-motor-f1203-7000kv-motor.html
https://www.getfpv.com/motors/micro-quad-motors/t-motor-f1203-7000kv-motor.html


 Options Laid Out 

 Specs  Option 1  Option 2  Option 3 

 Weight  4.7g  7.2g  5.25g 

 Size  F1203  M1106  F1203 

 9x9 Mounting?  Says “Standard 
 mounting 
 pattern” 

 Yes  Yes 

 KV  3500KV, 5500KV  6000KV  7000KV 

 Configuration  9N12P  -  9N12P 

 Diameter  16.2mm  16mm  15.5mm 

 Shaft Diameter  1.5mm  1mm  1.5mm 

 Internal 
 Resistance 

 -  -  198mOhm 

 Current Draw  1.2A @10V Idle  -  0.64A @10V 

 Power Draw  -  -  192W Max 

 Battery  3-4S  3-4S  2-3S 

 Recommended 
 Propeller Size 

 Recommended 
 for 2”-3” racing 
 builds 

 “Toothpick 
 builds” 

 - 

 Cost Per Motor  $13.99  $13.99  $14.99 

 We chose option 1 because it was affordable, and because it was the lightest 
 option. 

 Batteries 
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 Our frame is capable of holding a 3S-4S battery. The boards require 5V DC. It 
 seems to be generally recommended for drones to use LiPo batteries due to their 
 lighter weight and higher maximum current over Li-Ion batteries. 

 If our battery were 3S-4S our input voltage range would be: 

 Battery Type  Undervolt  Nominal Voltage 
 (V) 

 Overvolt 

 3S  9.6  11.1  12.6 

 4S  12.8  14.8  16.8 

 The exact undervoltage and overvoltage specifications are usually not listed, but 
 it seems that between 3.2 volts and 4.2 volts is commonly held as the usable 
 voltage range, with many listing down to 3.0 volts. 

 LiPo batteries follow the below discharge curve, with varying voltages under 
 different loads due to internal resistance and RC characteristics. 

 Battery selection will be dependent on the frame and motor selection. These 
 batteries assume the selection of the butterfly frame. 
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 As both the Pi Zero and Zynqberry parts depend on 5V USB power, it will 
 probably be necessary to regulate the voltage supply to the boards. 

 Option #1 
 Link: 
 https://www.racedayquads.com/products/rdq-450mah-3s-fpv-battery-for-2-and 
 -3-quads-80c 

 Spec  Value 

 Style  3S 

 Nominal Voltage  11.1V 

 Capacity  450mAh 

 C rate  80C 

 Dimensions  14.5x32x57mm (Fits butterfly well) 

 Weight  47g 

 Price per battery  $8.99 

 Pros 
 ●  Smallest dimensions 
 ●  Lightest option 
 ●  Cheapest option 

 Cons 
 ●  Smallest Capacity 
 ●  The butterfly might be able to hold more capacity 
 ●  Wide 

 Option #2 
 Link: 
 https://www.racedayquads.com/products/rdq-550mah-3s-fpv-battery-for-2-and 
 -3-quads-80c-xt30 

 Spec  Value 
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https://www.racedayquads.com/products/rdq-450mah-3s-fpv-battery-for-2-and-3-quads-80c
https://www.racedayquads.com/products/rdq-450mah-3s-fpv-battery-for-2-and-3-quads-80c
https://www.racedayquads.com/products/rdq-550mah-3s-fpv-battery-for-2-and-3-quads-80c-xt30
https://www.racedayquads.com/products/rdq-550mah-3s-fpv-battery-for-2-and-3-quads-80c-xt30


 Style  3S 

 Nominal Voltage  11.1V 

 Capacity  550mAh 

 C rate  70C 

 Dimensions  17x31x56mm 

 Weight  55g 

 Price per battery  $9.99 

 Pros 
 ●  Larger Capacity than option 1 
 ●  Less long than option 3 

 Cons 
 ●  Wide 
 ●  Lower C rating than options 1 and 3 

 Option #3 
 Link: 
 https://www.racedayquads.com/products/3-pack-of-rdq-series-14-8v-4s-650ma 
 h-80c-lipo-micro-battery-xt30 

 Spec  Value 

 Style  4S 

 Nominal Voltage  14.8V 

 Capacity  650mAh 

 C rate  80C 

 Dimensions  26x28x59mm (Fits butterfly) 

 Weight  80g 

 Price per battery  $14.17 
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https://www.racedayquads.com/products/3-pack-of-rdq-series-14-8v-4s-650mah-80c-lipo-micro-battery-xt30
https://www.racedayquads.com/products/3-pack-of-rdq-series-14-8v-4s-650mah-80c-lipo-micro-battery-xt30


 Pros 
 ●  Large Capacity 

 Cons 
 ●  Heavy 
 ●  We don’t know the exact dimensions of the butterfly battery area, and this 

 might be a little tight. 

 Spec  Option 1  Option 2  Option 3 

 Style  3S  3S  4S 

 Nominal Voltage  11.1V  11.1V  14.8V 

 Capacity  450mAh  550mAh  650mAh 

 C rate  80C  70C  80C 

 Dimensions  14.5x32x57mm  17x31x56mm  26x28x59mm 

 Weight  47g  55g  80g 

 Price per battery  $8.99  $9.99  $14.17 

 We chose option 2 because it wasn’t considerably more expensive or heavier than 
 option 1, and the increases in battery capacity represent a larger gain than the 
 increase in weight. It also has a less long and wide geometry than option 1 which 
 allows us some more confidence when placing it in the butterfly frame. 

 Propellers 
 Every propeller was specced with a 1.5mm shaft. Should we choose the motor 
 with a 1mm shaft we will need to find different props. Each propeller was specced 
 to the size of the different frames outlined above. The propeller will be specific to 
 the frame we choose. 

 59 



 Option #1: 40 mm 
 Link: 
 https://www.getfpv.com/propellers/micro-quad-propellers/hqprop-40mm-2-bla 
 de-micro-whoop-propeller-1-5mm-shaft-set-of-4-gray.html 

 ●  Cost: $2.25 

 Option #2: 2in 
 Link: 
 https://www.getfpv.com/propellers/micro-quad-propellers/betafpv-gemfan-202 
 0-4-blade-propeller-1-5mm-shaft-blue.html 

 ●  Cost: $2.50 

 Option #3: 3in 
 Link: 
 https://www.getfpv.com/propellers/micro-quad-propellers/emax-avia-th1609-3 
 -2-blade-propeller-set-of-4.html 

 ●  Cost: $2.99 
 We chose option two because they were a compatible size with the butterfly 
 frame, and a compatible shaft size with the motor we selected. 
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https://www.getfpv.com/propellers/micro-quad-propellers/hqprop-40mm-2-blade-micro-whoop-propeller-1-5mm-shaft-set-of-4-gray.html
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https://www.getfpv.com/propellers/micro-quad-propellers/betafpv-gemfan-2020-4-blade-propeller-1-5mm-shaft-blue.html
https://www.getfpv.com/propellers/micro-quad-propellers/emax-avia-th1609-3-2-blade-propeller-set-of-4.html
https://www.getfpv.com/propellers/micro-quad-propellers/emax-avia-th1609-3-2-blade-propeller-set-of-4.html


 Voltage Regulator 

 The raspberry pi zero and the zynqberry both require 5V DC. We can design our 
 motor control and IMU board to run on a mixture of battery voltage and 5V DC. 
 We should assume the motors will be running on the battery voltage and require 
 no regulation, while the flight control will require 5V. As such a voltage regulator 
 needs to be able to supply the power requirements of both such boards. It seems 
 reasonable to take the power requirements of the pi zero, the zynqberry and the 
 IMU and multiply by two in order to derate the regulator and provide room for 
 expansion. 

 Part  Estimated Maximum Current 
 Consumption 

 Pi Zero W  1 A (this is overkill) 

 Pi Zero 2W  2.5 A (recommended by datasheet) 

 Zynqberry  500 mA (per USB 2.0 spec) 

 IMU Option 1  1.25 mA 

 IMU Option 2  5 mA 

 IMU Option 3  10 mA 

 This means the regulator at most needs to power 3A, and because the IMU’s 
 operate on between 1.2 and 3.6 volts, we should probably try to find a regulator 
 that supplies both 5 Volt and 3 Volt lines, preferably one intended for powering 
 the USB 2.0 standard. 

 Option #1 
 Link: 
 https://www.digikey.com/en/products/detail/texas-instruments/TPS542941PW 
 PR/3548336 
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https://www.digikey.com/en/products/detail/texas-instruments/TPS542941PWPR/3548336
https://www.digikey.com/en/products/detail/texas-instruments/TPS542941PWPR/3548336


 Pros 
 ●  Most affordable 
 ●  Requires few passive components. 

 Cons 
 ●  Pad on bottom requires reflow… but so do the other two chips 

 Option #2 
 Link: 
 https://www.digikey.com/en/products/detail/texas-instruments/TPS65270RGE 
 R/2798812 
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https://www.digikey.com/en/products/detail/texas-instruments/TPS65270RGER/2798812
https://www.digikey.com/en/products/detail/texas-instruments/TPS65270RGER/2798812


 Pros 
 ●  Largest output voltage range 
 ●  Smallest footprint 

 Cons 
 ●  Most expensive 
 ●  Requires the most external passive components 

 Option #3 
 Link: 
 https://www.digikey.com/en/products/detail/texas-instruments/TPS542951RS 
 AR/4288723 

 https://www.ti.com/lit/ds/symlink/tps542951.pdf?HQS=dis-dk-null-digikeymo 
 de-dsf-pf-null-wwe&ts=1665119468248&ref_url=https%253A%252F%252Fwww 
 .ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D1 
 0%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn 
 %252Ftps542951 
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https://www.digikey.com/en/products/detail/texas-instruments/TPS542951RSAR/4288723
https://www.digikey.com/en/products/detail/texas-instruments/TPS542951RSAR/4288723
https://www.ti.com/lit/ds/symlink/tps542951.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1665119468248&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps542951
https://www.ti.com/lit/ds/symlink/tps542951.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1665119468248&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps542951
https://www.ti.com/lit/ds/symlink/tps542951.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1665119468248&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps542951
https://www.ti.com/lit/ds/symlink/tps542951.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1665119468248&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps542951
https://www.ti.com/lit/ds/symlink/tps542951.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1665119468248&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps542951


 Pros 
 ●  Nothing different than option 1, same chip smaller package 
 ●  Requires few passive components. 

 Cons 
 ●  Nearly identical to option 1 but more expensive 

 Value  Regulator 1  Regulator 2  Regulator 3 

 Dual Voltage 
 Output? 

 Yes  Yes  Yes 

 Max Current 
 Output 

 3A/2A  3A/2A  3A/2A 

 Input Voltage 
 Range 

 4.5~18V  4.5~18V  4.5V~18V 

 Output Voltage 
 Range 

 0.76~7V  0.8~15V  0.76~7V 

 Dimensions  4.4x5mm  4x4mm  4x4mm 

 Adjustable?  Yes  Yes  Yes 

 Cost  $2.85  $3.03  $2.99 

 We chose option one because it did basically everything the other options did but 
 at a lower price. 
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 IMU 
 According to hobbyists,  a 9DOF Accelerometer that includes a 6-axis 
 accelerometer, gyroscope, and a magnetometer is best. 

 Option #1 
 Link: 
 https://www.digikey.com/en/products/detail/stmicroelectronics/LSM6DS3TR/ 
 5180552 

 Pros 
 ●  Cheapest 
 ●  Seems to be comparable with other IMU’s 
 ●  Smallest form factor 

 Cons 
 ●  Cheapest may mean worst 
 ●  Not a 9-axis 

 Option #2 
 Link: 
 https://www.digikey.com/en/products/detail/bosch-sensortec/BMI088/863493 
 6 

 Pros 
 ●  Highest gravitational sensitivity 
 ●  Used on the previous drone so the software would still be compatible 

 Cons 
 ●  Not a 9-axis 

 Option #3 
 Link: 
 https://www.ceva-dsp.com/wp-content/uploads/2019/10/BNO080_085-Datash 
 eet.pdf 
 https://www.digikey.com/en/products/detail/ceva-technologies-inc/BNO085/9 
 445940 
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https://www.digikey.com/en/products/detail/ceva-technologies-inc/BNO085/9445940
https://www.digikey.com/en/products/detail/ceva-technologies-inc/BNO085/9445940


 Pros 
 ●  9 axis 
 ●  Seems to be the most intended for a drone 
 ●  Arm processor on chip 

 Cons 
 ●  Only 8 in stock 
 ●  Price 

 Field  IMU 1  IMU 2  IMU 3 

 Type  Accelerometer, 
 Gyroscope, 
 Temperature, 6 Axis 

 Accelerometer, 
 Gyroscope, 6 Axis 

 Accelerometer, 
 Gyroscope, 
 Magnetometer, 9 
 Axis 

 Comm Busses  I²C, SPI  I²C, SPI  I²C, SPI, UART 

 Accelerometer 
 Refresh Rate 

 12.5-1600Hz  1.6kHz  500 Hz 

 Accel Sensitivity  ±2/±4/±8/±16 g 
 full scale 

 +- 24 g  +- 8 g 

 Gyro Refresh Rate  12.5-1600Hz  1.6kHz  1 kHz 

 Angular 
 Sensitivity 

 ±125/±250/±500 
 /±1000/±2000 
 dps full scale 

 ±125/±250/±500 
 /±1000/±2000 
 dps full scale 

 +- 2000 dps 

 ADC Bits  12?  16?  12-bit accel, 16-bit 
 gyro 

 Supply Voltage  1.71~3.6V and 
 1.62V 

 1.2~3.6V  2.4V~3.6V 

 Dimensions  2.5x3x0.83mm  4.5x3mm  3.8x5.2x1.1mm 

 Current 
 Consumption 

 1.25 mA  5mA  10 mA 

 Cost  $2.78  $10.70  $18.57 - 8 in stock 
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 We chose option two because it is the same as the IMU on the previous drone 
 which allows us to not change that portion of the software. We believe that by 
 following this process, we were able to come to the best possible solution. 

 67 


