Microcontroller Controlled Aerial Robotics Team (MicroCART)

 $\bullet \bullet \bullet$

SDMY 23-45 Tyler Johnson, Connor Ryan, Cole Hunt, Austin Beinder, Emily Anderson, Grant Giansanti, and Gautham Ajith Advisor - Dr. Jones

Team 45

Grant Giansanti User <u>Interaction/Testing</u>

Tyler Johnson Physical Systems Lead

Cole Hunt Git Master/Device OS

Connor Ryan Project Manager

Emily Anderson Backend/Telemetry Lead

Austin Beinder Simulation/Control<u>s Lead</u>

Gautham Ajith YouTube/GUI Lead

Agenda

- Overview of the MICROCART team
- Conceptual and Lab Overview
- Project Requirements and expected outcomes
- Proposed project plan
- Testing plan
- Conclusions

Growing need for Robotics and Drones at Iowa State

- MicroCART Project has been around since 1998.
- Previous designs
 - Lack of adaptability
 - Difficult GUI
 - Bad Software Design

Team 2009

Team 2015

- Iowa State Classes
 - CPRE 488 Embedded System Design
 - EE 476 Control System Simulation
- Research
 - Controls
 - Simulation to physical devices

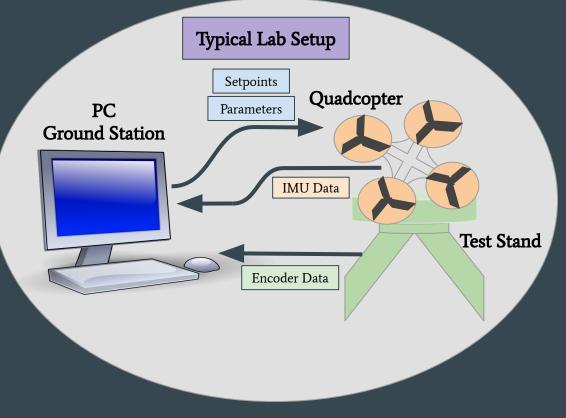
Team 2021 *crazyflie

We are trying to create a quadcopter that can be easily adaptable and accessible for ISU students and researchers

This Years Vision

Our team will continue to increase the accessibility of quadcopter resources available at Iowa State University through the following:

- Develop quadcopter for control theory research requiring multi-core functionality
- Improve existing lab materials and documentation for CPRE488: Embedded System Design
- Create demonstration for potential students utilizing MATLAB quadcopter simulation
- YouTube tutorials explaining to undergraduates the toolsets and processes related to our quadcopters


Conceptual Overview

Quadcopter: Runs flight controller software and logs data to PC.

Ground Station: Application communicating with quadcopter, sending commands, and displaying data.

Test Stand: Different source of rotational acceleration/velocity data

Simulation: Will simulate the quadcopters behavior for test flights

CPRE488 Lab

Overview

- Quadcopter uses a cascading PID flight controller
- First, students tune the PID values
- Next, students implement their own PID flight controller software

Feedback from students

- Connection to ground station is unreliable
- Test Stand communicates poorly with GUI
- UI is not always intuitive

Cascading PID Diagram, sdmay22-43

Requirements

- Functional Requirements
 - Drone: Communication latency of max 100 ms
 - Drone: 5 second stable hover
- Resource Requirements
 - Drone: Bluetooth Low Energy or the Wifi Network Cards
 - Labs: Flight Control Software on Lab PCs
- Physical Requirements
 - Drone: Size 125mm x 125mm | Weight 300g | Balanced COM
- User Experiential Requirements
 - Labs: Documentation for the Hardware and Software senior level engineering students
 - Labs: GUI needs simple navigation for interfacing with the Drone
 - The GUI should provide reliable performance with reduced errors and error logs
- Environmental Requirements
 - Drone: Safe for indoor use
 - Drone: Student safety in lab with no extreme injury incidents

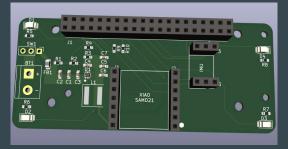
Design Approach

- Waterfall/Aglie
- Brainstorming and Constraints
- Comparison Tables
- Git Tasks

Part Selection

Field	IMU 1	IMU 2	IMU 3			
Туре	Accelerometer, Gyroscope, Temperature, 6 Axis	Accelerometer, Gyroscope, 6 Axis	Accelerometer, Gyroscope, Magnetometer, 9 Axis			
Comm Busses	I ² C, SPI	I ² C, SPI	I²C, SPI, UART			
Accelerometer Refresh Rate	12.5-1600Hz	1.6kHz	500 Hz			
Accel Sensitivity	±2/±4/±8/±16 g full scale	+- 24 g	+- 8 g			
Gyro Refresh Rate	12.5-1600Hz	1.6kHz	1 kHz			
Angular Sensitivity	±125/±250/±500/±1000/ ±2000 dps full scale	±125/±250/±500/±1000/ ±2000 dps full scale	+- 2000 dps			
ADC Bits	12?	<mark>16?</mark>	12-bit accel, 16-bit gyro			
Supply Voltage	1.71~3.6V and 1.62V	1.2~3.6V	2.4V~3.6V			
Dimensions	2.5x3x0.83mm	4.5x3mm	3.8x5.2x1.1mm			
Current Consumption	1.25 mA	5mA	10 mA			
Cost	\$2.78	\$10.70	\$18.57 - 8 in stock			

Our Solution: Hardware


• Raspberry Pi Zero 2W for increased computing power and multi-core

• PCB interfaces processor with quadcopter hardware (IMU, ESC/Motors, Expansion Decks, etc.)

Raspberry Pi Zero 2W

PCB 3D Rendering

Our Solution: Software

- Firmware: Bare-metal Application and ROS
- Support integration with simulation environment
- Improved Ground Station control software and GUI

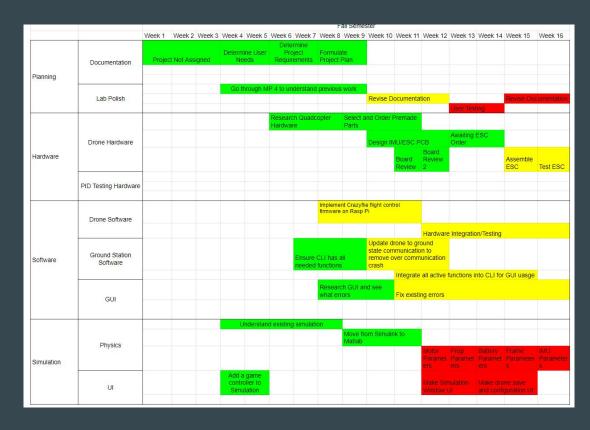
Prototype/Implementation

- The main parts of the quadcopter have been selected and ordered
- First PCB revision has been ordered and assembled
- Test software has been created to interface with the motors

Challenges

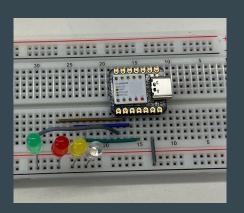
Technical Problems:

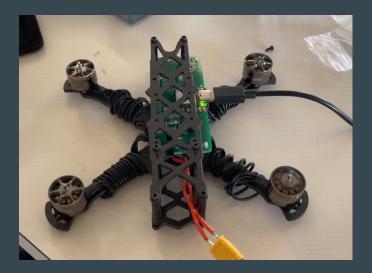
- Learning new Software(GIT and QT)
- Redesign board because of space constraints.
- Current MicroCART Software contains a lot of bugs


Non-Technical:

- Project management
- Time Management
- Organization
- Supply chain issue

Project Plan-Schedule


Done In progress Not Complete


Working through MP4 PCB has been ordered Still continuing to fix and improve the GUI

Testing Plan

- Unit Testing
 - \circ $\,$ PWM expansion with LEDs $\,$
- Interface Testing
- Integration Testing
- System Testing
 - PWM expansion with motors on the frame
- Regression Testing
- Acceptance Testing

Contributions

Significant Individual Contributions for Fall 2022

Team Member	Contributions Converted a lot of the simulation to matlab Specced out a lot of the parts we ended up using							
Austin Beinder								
Cole Hunt	 Updated crazyflie firmware for flight testing Setup Raspberry Pi Zero W with environment for hardware testing 	37						
Connor Ryan	 Designed Main PCB Evaluated parts and frames Website 	54						
Emily Anderson	 Worked primarily on learning GUI software in order to make functionality improvements and diagnose current bugs 	38						
Gautham Ajith	 Converted the Actuation to MATLAB Setting up documentation process for GUI issues Helped around related to Design Documentation 	37						
Grant Giansanti	 Designed and tested PWM code on PWM expansion module Setup a headless ubuntu image on pi zero 2w Examined ways to reverse engineer crazyflie software to raspberry pi 	40						
Tyler Johnson	 Designed IMU Breakout Board Helped a lot with Design Documentation 	41						

Project Roadmap

- We are currently slightly behind in our schedule
- Next semester plans:
 - Continue fixing bugs GUI
 - Test drone
 - REV 2 of PCB
 - Match simulation to our quad

						0	1.0									
						Secon	d Semes	ter								
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 16
	Hardware	e Testing						-							1.1.1.1.	
			F	Rev 2 PC	в											
						Per	formance	e Evaluat	ion							
Hardware										Docu	ment Hard	dware				
	Integratio	n of hard	vare/soft	ware												
						Bug test	ing and f	ixing			Å.					
Software																
		Finish	Simulatio	on UI												
						Tune s	imulation	to match	n quad							
						100.00				Simulatio	n/Quad co	mparison				
Demo														0	Demo	
	Craz	yflie tutor	ials													
				1	MP-4 Tuto	orials/Tip	S			MP-4 5	Support					
														Demo Vid	eos	
Documentation																

Questions?

- We are currently slightly behind in our schedule
- Next semester plans:
 - Continue fixing bugs GUI
 - Test drone
 - REV 2 of PCB
 - Match simulation to our quad

						0	1.0									
						Secon	d Semes	ter								
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 16
	Hardware	e Testing						-							1.1.1.1.	
			F	Rev 2 PC	в											
						Per	formance	e Evaluat	ion							
Hardware										Docu	ment Hard	dware				
	Integratio	n of hard	vare/soft	ware												
						Bug test	ing and f	ixing			Å.					
Software																
		Finish	Simulatio	on UI												
						Tune s	imulation	to match	n quad							
						100.00				Simulatio	n/Quad co	mparison				
Demo														0	Demo	
	Craz	yflie tutor	ials													
				1	MP-4 Tuto	orials/Tip	S			MP-4 5	Support					
														Demo Vid	eos	
Documentation																